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The kinematical derivation of intensity pro®les is considered. It is shown that the

shapes of the pro®les depend not only on the shape of the crystal but also on the

crystal system and axial ratios of the unit cell and on the angles between the

direction of the diffracted beam and the cell axes. For all crystal shapes, the widths

of the pro®les are determined by the Lorentz factor and the mean thickness of the

crystal in the direction of the diffracted beam. The similarity of the intensity

distributions of cubiform and spherical crystals is discussed. It is shown that

almost identical results are obtained for the kinematical intensity pro®les of a

plane parallel plate having a large crystal edge ratio bathed in the beam and the

dynamical pro®les of thin plane parallel plates with in®nite lateral extension.

Extinction-corrected pro®les of the plane parallel plate are compared with the

results of the dynamical theory. In the case of a spherical crystal, the primary-

extinction correction factor, yp, obtained with extinction-corrected pro®les is

compared with yp commonly used in structure analysis.

1. Introduction

In xx2.1 and 2.2 of Authier & Malgrange (1998) (cited as A&M

hereafter), the intensity pro®les obtained in the framework of

the kinematical theory are compared with those obtained

according to the dynamical approach. Extinction is discussed

in x2.3. Some of the formulae and statements presented in

these paragraphs are misleading. Although the shape depen-

dence of the intensity pro®le is discussed in x2.1 of A&M, the

shape-dependent path lengths of the incident and re¯ected

beams, which determine the maximum value of the intensity

distribution, are missing in the expression given for the

intensity pro®le, Ih. As a consequence, Ih has an unusual

dimension, the pro®les have to be presented in Fig. 2 of A&M

in a `normalized' form, which masks similarities in the shapes

between the kinematical and dynamical pro®les, and the

`integrated intensity' obtained by integrating Ih over the

scanning variable differs appreciably from the expression

given in textbooks.

The detailed analysis of the kinematical interference func-

tions, developed in the 1930s and 1940s (see, for example,

Patterson, 1939), has possibly fallen into oblivion to a large

extent. It seems worthwhile, therefore, to present in the

following a short review of the derivation of the kinematical

intensity pro®les for crystals of various shapes using the

modern tool Mathematica (Wolfram, 1999), to make supple-

mentary remarks on dynamical results and to compare the

kinematical expressions with dynamical, as well as extinction-

corrected, intensity distributions. Although several equations

given in this paper can be found in textbooks or in previous

papers of the author, the basic results are summarized in x2 in

order to aid the reader in following the derivation of the new

expressions.

In x2, the shape-independent expressions for the intensity

pro®le, the width of the pro®le, the maximum value of the

pro®le and the integrated intensity are derived. Then the

pro®les for a parallelepipedon and a sphere are given expli-

citly. The dependence of the pro®le shape on the angle

between the direction of the diffracted beam and the unit-cell

axes is discussed. Pro®les of crystal spheres and platelets

bathed in the incident beam are presented. In x3, results of the

dynamical theory are summarized. In x4, extinction-corrected

pro®les given in the literature are compared with the dy-

namical re¯ectivity distributions. Last, but not least, the

primary-extinction correction obtained with the extinction-

corrected pro®les is compared with extinction corrections

commonly used in structure analysis.

2. Kinematical intensity profiles

In the framework of the kinematical theory, the intensity

diffracted elastically in the direction ki � MPi (Fig. 1; Pi are

particular surface points on the Ewald sphere with radius jk0j =
jkij = 1=� and centre M, � is the wavelength of the incident and

re¯ected beams and H is a reciprocal-lattice point) is given by

(Azaroff, 1968)

IPi
� �I0 p=R2�r 2

0 F 2G 2 � �I0 p=R2� r 2
0 F 2�Vcry=Vcell�2G2

1: �1�

I0 is the incident intensity [energy cmÿ2 sÿ1], p is the polar-

ization factor equal to 1 and (cos2�)2 for the parallel and

perpendicular components of the X-ray electric ®eld, respec-

tively (in the case of unpolarized or partly polarized beams the

usual mean values have to be calculated), R is the distance

between the crystal and the detector, r0 is the classical electron

radius, F is the structure factor, Vcry is the crystal volume, Vcell



is the unit-cell volume and G is the interference function. G2 is

proportional to the square of the number of unit cells in the

crystal, N, and to the crystal-shape-dependent distribution

function G2
1. The maximum value of G2

1 is equal to unity and

the volume integral in reciprocal space is given byR
G2

1 dV� � 1=Vcry:

The power crossing the detector surface [energy sÿ1] is

obtained by integrating the intensities diffracted in the parti-

cular directions ki over the area A of the detector surfaceR
IPi

dA � R2�2
R

IPi
dS; �2�

where dS is the area element on the Ewald sphere perpendi-

cular to the direction of the diffracted beam. For simplicity, it

is assumed that the locus of the points Pi in Fig. 1, i.e. the

section area S between the Ewald sphere and the G2
1-depen-

dent surroundings of the reciprocal-lattice point, can be

approximated by a plane. Using the mean thickness �tin of the

crystal de®ned by �tin � Vcry=qin, where qin is the cross section

of the crystal normal to the incident beam, and the abbre-

viation 1=� = r0�jFj p1=2=Vcell, equation (2) can be expressed

as

R �� �kin�
I �� �
I0qin

� 1

I0qin

Z
IPi

dA � �tin

�2
Vcrys

Z
G2

1 �� � dS: �3�

The dimensionless re¯ectivity R���kin therefore depends on

the values of the distribution function G2
1 in the section area S,

i.e. it depends on �, the distance between the Ewald sphere

and the reciprocal-lattice point H in the direction of the

re¯ected beam (see Fig. 1). The intensity pro®le I���=I0qin is

obtained, pulling the reciprocal-lattice point together with its

surroundings in the direction of the diffracted beam from

outside to inside the Ewald sphere [`pull down procedure'

(Rossmanith, 2000a), cited as Ro00a hereinafter]. Bearing in

mind that dSd� = dV�, where d� is the element in the direction

of the re¯ected beam, the total `integrated intensity'

[energy sÿ1 cmÿ1] obtained during the `pull down procedure',

i.e. the area of the pro®le, is proportional to the volume

integral in the reciprocal space,

I
�� �

integral

�I0qin�
� �tin

�2
Vcry

Z Z
G2

1 dS d� � �tin

�2
: �4�

The maximum of the pro®le corresponds to (3) calculated for

� = 0. Consequently the fundamental quantity in pro®le

analysis, the integral widths ��integral of the pro®le, de®ned as

the width of a rectangle with the same maximum and the same

area [equation (20.5) of Azaroff (1968)], is the quotient of

expressions (4) and (3),

��integral � 1=
�
Vcrys

R
G2

1 � � 0� � dS
� � 1= �tdiffr: �5�

It is clear from (3) and (5) that �tdiffr � 1=��integral has dimen-

sions of length, i.e. it is an average of the thickness of the

crystal in the direction of the diffracted beam. The maximum

of the dimensionless re¯ectivity pro®le I �� �=I0qin can there-

fore be expressed as

I � � 0� �=I0qin � �tin
�tdiffr=�

2: �6�
For intermediate Bragg angles, the section areas S corre-

sponding to the `pull down procedure' differ only marginally

from the section areas S corresponding to the ! scan (rotation

about the axis perpendicular to the plane of the paper through

the zero point of the reciprocal space), i.e. assuming that the

circular path of the reciprocal lattice point can be approxi-

mated by a straight line in the vicinity of the Ewald sphere, the

pro®les obtained during the !-scan are equivalent to those

obtained during the `pull down procedure'. The pro®les differ

only in their abscissae and the dimensions of the corre-

sponding variable. It was shown in Ro00a that the integral

width �!integral of an intensity pro®le obtained using the

!-scanning technique is given by (Ro00a-16)

�!integral � ��integral�L � �= �tdiffr sin 2�B� �; �7�
where L is the Lorentz factor. The expressions (1)±(7) are

valid for all crystal shapes.

For a crystal having the shape of a parallelepipedon whose

sides are parallel to the cell edges,

G2
1 �

1

�N1N2N3�2
sin��N1x��

sin��x��
sin��N2y��

sin��y��
sin��N3z��

sin��z��
� �2

�8�

is obtained (Fig. 2), where x�, y�, z� are the components of any

vector d� = x�a� + y�b� + z�c� in reciprocal space, a�, b�, c� are

the reciprocal-lattice vectors and N1, N2, N3 are the numbers

of unit cells lying along the edges of the crystal. The total

number of unit cells in the parallelepipedon is therefore N =

N1N2N3. The interference function is therefore a periodic

function with intensity maxima in the surrounding of the

reciprocal-lattice points. It should be noted that, as in the case

of the dynamical theory, all reciprocal-lattice points contribute

to the diffracted intensity (making possible simultaneous

diffraction), although the contribution of lattice points far

away from the Ewald sphere will be negligibly small.
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Figure 1
The geometry of the `pull down procedure' in reciprocal space.
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Because of the periodicity of the distribution function G2
1,

any vector d� can be replaced by the vector Dd� = d� ÿ h =

�x�a� + �y�b� + �z�c� (see Fig. 1), where h is a vector

connecting the origin of the reciprocal lattice with a reci-

procal-lattice point H, i.e. the components x�, y�, z� in (8) can

be replaced by the components �x�, �y�, �z�. For the sake of

(8) being integrable, the sines in the denominator of the

periodic function are usually replaced by their arguments

resulting in a function which is no longer periodic in reciprocal

space (Fig. 3a). For a rectangular parallelepipedon, the

numbers Ni can be calculated according to acrys a�, bcrys b�,
ccrys c�, where acrys, bcrys, ccrys and a�, b�, c� are the lengths of

the edges of the crystal and the lengths of the reciprocal-lattice

vectors, respectively. Introducing the variables �x = a��x�, �y =

b��y�, �z = c��z�, (8) can be approximated by

G2
1 �

sin��acrys�x�
�acrys�x

sin��bcrys�y�
�bcrys�y

sin��ccrys�z�
�ccrys�z

" #2

: �9�

The distribution functions shown in Figs. 2 and 3(a) were

calculated for a crystal cube (acrys = bcrys = ccrys) consisting of

N = 1000 cubic unit cells (a� = b� = c�).

In the case of a spherically shaped crystal with a cubic

lattice and radius r, it was shown, for example, by Wilson

(1962), that G2
1 can be approximated by

G2
1 � 3

sin�2�"r� ÿ 2�"r cos�2�"r�
�2�"r�3

� �2

; �10�

where " is de®ned by " = ��2
x � �2

y � �2
z�1=2. The lattice function

shown in Fig. 3(b) was calculated for a spherical crystal, of

radius r = �3= 4�� �Na3
cell�1=3 � 0:62acrys, where acell = 1=a� is the

lattice constant of the spherical as well as the cubiform crystal.

In Fig. 3(c), the pro®les of the two functions (9) and (10),

obtained for �y = �z = 0, are compared. It is obvious from Fig. 3

that the main maxima of cubiform and spherical crystals, both

having the same crystal volume Vcrys = Na3
cell, are very similar

in shape. The distribution functions differ appreciably only for

the higher-order maxima. In the case of the spherical crystal,

the neighbourhood of the reciprocal-lattice point is spherically

symmetric, whereas in the case of the cubiform crystal, whose

sides are parallel to the cell edges, the intensity of the higher-

order maxima is concentrated along the reciprocal axes.

Furthermore, the contour plots of G2
1 calculated for the

Figure 2
G2

1 for a cubiform crystal with edges acrys (arbitrary units) parallel to the
cubic unit-cell edges. G2

1 was calculated according to (8) by means of
Mathematica. N1 = N2 = N3 = 10, �z = 0; �x, �y, �z having the dimensions
(units of acrys)

ÿ1.

Figure 3
(a) G2

1 for a cubiform crystal with edges acrys (arbitrary units) parallel to
the cubic unit-cell edges. G2

1 was calculated according to expression (9) by
means of Mathematica. N1 = N2 = N3 = 10, �z = 0; �x, �y, �z having the
dimensions (units of acrys)

ÿ1. (b) G2
1 for a spherical crystal with cubic unit

cell and with r � 0.62acrys (i.e. 0.62 times the edges of the cubiform crystal
of a and Fig. 2). G2

1 was calculated according to expression (10) by means
of Mathematica, �z = 0. (c) G2

1 calculated by means of Mathematica for �y =
�z = 0 for a cubiform crystal [expression (9), red solid line] and a spherical
crystal [expression (10), blue dashed line], the two crystals having the
same volume.



cubiform crystal with edges acrys and shown in Figs. 5(a) and

5(b) can be compared with the contour plot of a rectangular

plane parallel plate with edges ccrys = bcrys = 5acrys, represented

in Fig. 4(a).

In the case when the plane of diffraction is restricted to the

(hk0) plane in reciprocal space (i.e. k0 and k in the plane of

the paper), for the rectangular parallelepipedon the length
�tdiffr = 1=��integral will depend on the angle ' between the unit-

cell edge acrys [i.e. �x in Fig. 4(a)] and the vector in the direction

of the diffracted beam, k. In the cases ' = 0 and ' = 90�, the

two orthogonal coordinate systems attached to the crystal

(�x, �y, �z) and to the diffracted beam, k (kx antiparallel to

the diffracted beam, kz parallel to �z, ky in the plane S),

respectively, are parallel. Using the transformation �x =

kx cos 'ÿ ky sin ', �y = kx sin '� ky cos ', and bearing in mind

that for the peak maximum kx = � = 0, the length �tdiffr�'� =

1=��integral(') can be calculated according to

�tdiffr '� � � acrysbcrysccrys

Z�1
ÿ1

sin��acrys�x�
�acrys�x

" #2

� sin��bcrys�y�
�bcrys�y

" #2
sin��ccrys�z�
�ccrys�z

" #2

dky d�z: �11�

For ' = 0 and 90�, it follows that �x = kx = 0 and �y = kx = 0,

respectively. It can therefore easily be shown that, for ' = 0�,
equation (11) results in �tdiffr�'� = acrys, whereas, for ' = 90�, the

result �tdiffr�'� = bcrys is obtained, i.e. in these two cases the

length �tdiffr�'� corresponds to the constant thickness of the

crystal in the direction k. Furthermore, by means of Mathe-

matica, for 0 < ' < 90�, the length �tdiffr�'� can be given as an

analytical expression,
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Figure 4
(a) The geometry of diffraction in the (hk0} plane of the reciprocal space.
Surrounding of the reciprocal-lattice point corresponds to the rectangular
parallelepipedon with edges parallel to the cubic unit-cell edges. N1 = 10,
N2 = N3 = 50. (b) Red lines: acrys=�tdiffr�'� calculated according to
expression (12) for different crystal edge length bcrys = nacrys, with n = 1, 2,
5, 10, 100. Blue dashed line: acrys=�tdiffr�'� = cos '.

Figure 5
(a) ' = 0� and (b) ' = 45�. The geometry of diffraction in the (hk0) plane
of the reciprocal space. Surrounding of the reciprocal-lattice point
corresponds to the cubiform crystal with edges acrys parallel to the cubic
unit-cell edges. N1 = N2 = N3 = 10. (c) ' = 0� and (d) ' = 45�. I���=const =R

G2
1��� dS. Red solid lines: cubiform crystal (acrys = bcrys = ccrys). Blue

dashed lines: spherical crystal. Both crystals consist of the same
substance, have the same volume and are bathed in the same incident
beam. The constant is therefore identical for the two samples.
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�tdiffr �
�ÿ2�bcrys� cos '�3 ÿ 2�acrys� sin '�3

� bcrys� cos 'ÿ acrys� sin '
�� ��3
� bcrys� cos '� acrys� sin '
�� ��3�
� �6acrysbcrys�

3 sin2 ' cos2 '�ÿ1: �12�

In the case when the diffraction plane is not restricted to the

(hk0) plane in reciprocal space, the expression for �tdiffr, and as

a consequence �!integral [expression (7)], will become even

more complicated. In Fig. 4(b), the ratio acrys= �tdiffr�'�, calcu-

lated according to (12), is plotted versus the angle ' for

different crystal edge length bcrys = nacrys, with n = 1, 2, 5, 10,

100. It is obvious from the ®gure that for large edge-length

ratios the acrys= �tdiffr�'� curve approaches the blue dashed

curve in Fig. 4(b), which corresponds to acrys= �tdiffr�'� = cos '.

In Fig. 5, the intensity pro®les

I �� �=constant � R G2
1 �� � dS

obtained for ' = 0 (Figs. 5a and 5c) and 45� (Figs. 5b and 5d)

are compared for a cubiform (acrys = bcrys = ccrys, red solid lines)

and a spherical crystal (blue dashed lines), both crystals

consisting of the same substance, having the same volume and

bathed in the same incident beam. The constant is therefore

identical for the two samples. In the case shown in Figs. 5(a)

and 5(c) with �x antiparallel to the direction of the re¯ected

beam and �y, �z in the plane S, �tdiffr = acrys. In the case shown

in Figs. 5(b) and 5(d), expression (12) results in �tdiffr �
�2 ���

2
p
=3�acrys � 0.94acrys (see also Fig. 4b). It was shown in

Ro00a that, for a spherical crystal, �tdiffr � 3r=2 � 0:93acrys is

obtained. The heights I�� � 0� [expression (6)] and the inte-

gral widths [expression (5)] of cubiform and spherical crystals

having the same volume are therefore almost identical.

Furthermore, in the case of Fig. 5(d), the two pro®les are very

similar in shape.

In Fig. 6, intensity pro®les I���=I�� � 0� calculated for ' =

45� for plane parallel plates all with the same volume, Vcrys = 1,

but having different crystal edge ratios, bcrys = ccrys = nacrys (n =

1, 2, 5, 10, 100 from outermost to innermost curve, i.e acrys =

nÿ2/3 = 1, 0.63, 0.34, 0.22, 0.046; bcrys = nacrys = 1, 1.26, 1.7, 2.2,

4.6; �t1 = acrys=cos ' = 1.41, 0.89 0.48, 0.3, 0.066, all lengths in

arbitrary units), are plotted versus ���t1, where �t1 corre-

sponds to the (constant) thickness (= beam path length in the

direction of the diffracted beam) of a plane parallel plate with

in®nite lateral extension (blue dashed line in Fig. 4).

It is evident from Fig. 6 that with increasing edge ratio, n,

the kinematical pro®le of the plane parallel plate bathed in the

beam becomes more and more similar in shape to the pro®le

of the plane parallel plate with in®nite lateral extension,

presented in Fig. 7(a) (dashed black line), calculated according

to expression (15), the `kinematical approximation' obtained in

the framework of the dynamical theory, which will be discussed

in the following two sections. It should be noted, however,

that, in a routine experiment with a beam cross section of

about 0.5 mm, an edge ratio, n > 100, of a crystal bathed in the

beam would require a crystal plate with edges bcrys and ccrys <

0.5 mm and, consequently, acrys < 5 mm, i.e. it would require a

crystal with a shape which would be dif®cult to obtain.

It is evident that expressions (3), (5) and (6) become

extremely complicated for a crystal with triclinic symmetry,

arbitrary shape and arbitrary diffraction plane, whereas (4)

does not depend on these features.

3. Dynamical intensity profiles

For simplicity, the expressions given for the power ratio, Rdyn,

are restricted to non-absorbing crystals, i.e. �FhFÿh�1=2 = Fh,

and to symmetrical re¯ection, i.e. the re¯ecting plane is

parallel to the surface of the plane parallel plate with unlim-

ited lateral extension. Consequently, the thickness of the

crystal in the direction of the incident beam is equal to the

thickness in the diffracted beam, �tin = �tdiffr = �t1. In the

framework of the dynamical theory, expressions for Rdyn are

given, for example, by Zachariasen (1945), here referred to as

Z45. Replacing Zachariasen's symbol A de®ned in (Z45-3.140)

by A � �t1=� and replacing the symbol y de®ned in (Z45-

3.141) by y � ���, the following expressions are obtained. For

the Bragg case,

R �� �B�
1

�����2 � ������2 ÿ 1� cot2f� �t1B =��������2 ÿ 1�1=2g
for �����2 > 1 �Z45-3:143�

R �� �B�
1

�����2 � �1ÿ �����2� coth2f� �t1B =���1ÿ �����2�1=2g
for �����2 < 1 �Z45-3:144�:

�13�

For the Laue case,

Figure 6
I���=I�� � 0� calculated for ' = 45� for plane parallel plates all with the
same volume, Vcrys = 1, versus ���t1. Crystal edge ratios, n = 1, 2, 5, 10, 100
from outermost to innermost curve (acrys = nÿ2/3 = 1, 0.63, 0.34, 0.22, 0.046;
bcrys = nacrys = 1, 1.26, 1.7, 2.2, 4.6; �t1 = acrys=cos' = 1.41, 0.89 0.48, 0.3,
0.066 in arbitrary units).



R���L � � �t1L =��2
sin ��� �t1L ��2 � � �t1L =��2�1=2

��� �t1L ��2 � � �t1L =��2�1=2

� �2

;

�Z45-3:142� �14�
where �t1B = t0= sin �B (Bragg case) and �t1L = t0= cos �B (Laue

case) and t0 is the thickness of the plate normal to the plate

surface, where �B is the Bragg angle. For the sake of clarity in

Fig. 7, the peak shift term in Zachariasen's y, which is zero for

the Laue case, is neglected in the Bragg case.

For thin crystals, (13) and (14) can be approximated by [see

Fig. 7(a), discussed in the following section]

R �� �kin' �t1=�� �2 sin�� �t1��
� �t1�

� �2

; �Z45-3:157� �15�

the `kinematical approximation' obtained in the framework of

the dynamical theory, where �t1 = �t1B in the Bragg case and
�t1 = �t1L in the Laue case.

4. Extinction-corrected intensity profiles

Extinction-corrected intensity pro®les derived in the frame-

work of the kinematical theory for different crystal shapes are

given by Zachariasen (1967) (here referred to as Z67) and

Becker & Coppens (1974) (here referred to as B&C).

Exact solutions of the Hamilton±Darwin transfer equations

for the plane parallel plate with unlimited lateral extension

were presented by Z67 and reconsidered by B&C. According

to B&C's expression (26), the kinematical re¯ectivity for this

case is given by (15) (B&C's symbols "1 and � are equivalent

to ! = ��L and �t1=�L, respectively, i.e. "1� = � �t1). Using

(Z67-12) and (Z67-13), the extinction-corrected re¯ectivities

for the symmetrical Bragg case,

R���ext
B � R���kin=�1� R���kin�; �16�

and the symmetrical Laue case,

R���ext
L � f1ÿ exp�ÿ2R���kin�g=2; �17�

are obtained. In Fig. 7, the dynamical pro®les obtained

according to (13) (red line) and (14) (blue line), given in the

®gure only for � < 0, are compared with the pro®le (15) (black

dashed line) as well as with the extinction-corrected pro®les

(16) (red line) and (17) (blue line). The last three pro®les are

presented only for � > 0. For �t1=� = 0.3 (Fig. 7a), the pro®les

are very similar in shape, and the heights of the pro®les,

R�� � 0�B = 0.0849, R�� � 0�L = 0.0873, R�� � 0�kin = 0.09,

R�� � 0�ext
B = 0.0826 and R�� � 0�ext

L = 0.0824, differ only

slightly. The dashed black pro®le is almost identical in shape

with the innermost pro®le of Fig. 6. For �t1=� = 1 (Fig. 7b), the

extinction-corrected pro®les are poor approximations of the

dynamical pro®les.

As pointed out by Rossmanith (2000b) (hereafter Ro00b),

owing to energy conservation the diffracted intensity cannot

be larger than the intensity incident on the crystal sample, i.e.

there exists an upper limit for the kinematical re¯ection

pro®le de®ned by R���upperlimit = R���kin for R���kin < 1 and

R���upperlimit = 1 otherwise. Therefore, in the cases of Figs. 7(c)

and 7(d), i.e. for �t1=� = 3 and 10, corresponding to

R�� � 0�kin = 9 and R�� � 0�kin = 100, respectively, the kine-

matical pro®le (15) is replaced by R���upperlimit. Nevertheless,

for these large �t1=� ratios (Figs. 7c and 7d), no agreement

between the dynamical and extinction-corrected kinematical

pro®les is obtained. One possible reason for this disagreement

may be the inappropriate experimental condition ± an in®nite

plane parallel plate cannot be bathed in the incident beam. As

a consequence, the volume Vcrys involved in the diffraction

process is clearly de®ned only for the case where the incident

and diffracted beams are exactly parallel (2� = 0 or 180�: �tin =
�tdiffr = �t1, qin = qdiffr, where qdiffr is the beam cross section of

the diffracted beam). For all other cases, i.e. during the ! scan

and even more for intermediate Bragg angles, the volume

Vcrys = �tinqin will not be identical to the volume �tdiffrqdiffr. In

agreement with B&C, `it must be concluded that the transfer

equations incorrectly describe the primary extinction effect in

an in®nite parallel plate'.

In the case of a perfect spherical crystal bathed in the

incident beam, the extinction-corrected re¯ectivity pro®les

given by B&C are de®ned by

R���ext
sphere � R �� �kin'B&C; �18�

where R �� �kin, de®ned by the expression (Ro00b-8),

R �� �kin �
�tin

�tdiffr

�2

1� 8 �r�� �2 ÿ cos 4�r�� � ÿ 4�r� sin 4�r�� �
32 �r�� �4

� 4�r=3; �19�
is proportional to the diffracting cross section per unit volume

and unit intensity, �, de®ned by (B&C-29). In (19), �tin =

Vcrys=qin = �4=3�r and �tdiffr = �3=2�r = 9=8�tin [expressions

(Ro00a-6) and (Ro00a-11)]. A closed form for 'B&C could be

given by B&C only for the two cases [2� = 180�, i.e. the `Bragg

case'; the obvious printing error, i.e. interchange of the sign `+'

and the fraction `1=2', is corrected here, otherwise (B&C-32)

would not correspond to the series expansion (B&C-33a)]

'B&C�2� � 180�� � 3

4 �r� �3 �r� �2ÿ�r� 1
2 ln 1� 2�r� �� �

�B&C-32�
and (2� = 0�, i.e. the `Laue case')

'B&C�2� � 0�� � 3

64 �r� �3 8 �r� �2�4�r exp ÿ4�r� ��
ÿ 1ÿ exp ÿ4�r� �� �	: �B&C-1�

In Fig. 8, the extinction-corrected pro®les R���ext
sphere for the

`Bragg case' (red line) as well as the `Laue case' (blue line) are

compared with the kinematical pro®le R���kin (black line). The

maxima of the kinematical pro®les in Fig. 8 are given by

R���max
kin � �9=8�� �tin=��2, i.e. in Fig. 8(a) [(b), (c), (d)] with

�tin=� = 0.3 [1, 3, 30], R���max
kin = 0.101 (1.125, 10.125, 1012.5).

Therefore, in the representation of Figs. 8(b), 8(c) and 8(d),

the kinematical pro®les whose maxima exceed the value 1 are

replaced by R���upperlimit corresponding to (19). It is obvious

from Fig. 8 that, in agreement with energy conservation, for

large �tin=� ratios the maxima of B&C's extinction-corrected
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pro®les approach R�� � 0�ext
sphere = 1 in the `Bragg case'. In the

`Laue case', the maxima are limited to 1=2. Furthermore, it

should be noted that the area of the extinction-corrected

pro®les is considerably smaller than the area of the pro®les

R���upperlimit.

It seems worthwhile therefore to compare the extinction

correction, obtained with these pro®les, with extinction

corrections commonly used in crystallographic software.

According to (B&C-7), the primary extinction factor, yp, is

de®ned as the ratio of the area of the extinction-corrected

pro®le to the area of the kinematical pro®le (see also

Ro00b-x2.3). Using the pro®les de®ned in (18) and (19), the

extinction correction

yp �
R

R �� �kin'B&C d�
�R

R �� �kin d�; �20�

as well as the extinction-corrected mean thickness of the

crystal, text = �tinyp, expression (Ro00b-13),

text � �2
R

R �� �kin'B&C d�; �21�

can be calculated for B&C's `Bragg case' as well as `Laue case'

for increasing values of the mean thickness of the crystal, �tin.

The results (curve 3: `Bragg case'; curve 4: `Laue case') are

presented in Fig. 9 for � = 1 (arbitrary units), i.e. �tin as well as

text are given in units of �. The `upper limit' of text for a

spherical crystal (curve 2), corresponding to the pro®les

R���upperlimit (expression Ro00b-12) is also given. The dyna-

mical result for the extinction-corrected mean thickness of a

semi-in®nite plate, text = � tanh� �t1=�� (expression Ro00b-6)

is presented as curve 1. The dotted curves in Fig. 9, on the

other hand, represent the results obtained with B&C's

analytical expression for yp,

yp �
n

1� 2� 3
2 r 2=�2� � A��B�� 3

2 r 2=�2�2

� �1� B��B�� 3
2 r 2=�2��ÿ1

oÿ1=2

; �B&C:37�

calculated for various Bragg angles �B, with A��B� =

0:2� 0:45 cos 2�B and B��B� = 0:22ÿ 0:12�0:5ÿ cos 2�B�2.

Figure 8
Comparison of the extinction-corrected pro®les R���ext

sphere with
R���upperlimit for a spherical crystal. Red line: `Bragg case' (2� = 180�).
Blue line: `Laue case' (2� = 0�). Black line: R���upperlimit corresponding to
(19). (a) �tin=� = 0.3. (b) �tin=� = 1. (c) �tin=� = 3. (d) �tin=� = 30.

Figure 7
Comparison of dynamical and kinematical pro®les for a plane parallel
plate with in®nite lateral extension. For � < 0, red line: dynamical Bragg
case, expression (13); blue line: dynamical Laue case, expression (14). For
� > 0, black dashed line: pro®le R���upperlimit corresponding to (15); red
line: extinction-corrected kinematical pro®le, expression (16); blue line:
extinction-corrected kinematical pro®le, expression (17). (a) �t1=� = 0.3;
(b) �t1=� = 1; (c) �t1=� = 3; (d) �t1=� = 10.



As a result of the complete re¯ection of the incident beam

in large crystals, for all �tin=� ratios, the extinction length � is

obviously an upper limit for the extinction-corrected mean

thickness of the crystal, text. This is true for the plane parallel

plate considered in the framework of the dynamical theory

(curve 1) as well as for the spherical crystal considered in the

framework of the kinematical approach (curves 2, 3 and 4).

The extinction-corrected thickness of a crystal, text, obtained

with B&C's `Bragg case' pro®les (curve 3) is considerably

smaller than text corresponding to curve 2. The large difference

between curves 2 and 3 can readily be explained by the much

smaller areas of B&C's `Bragg case' pro®les compared with

the R���upperlimit pro®les (see Fig. 8), the areas of the latter

being de®nitely overestimated. It is interesting to note that

B&C lines 3 and 4 are also essentially different from the

results of Larsen & Thorkildsen (1998) which were presented

as dashed lines in Fig. 1 of Ro00b. This may be regarded as an

additional indication for the justi®cation of the conclusions

made by Rossmanith (2000c), i.e. that neither equation (2) of

Larsen & Thorkildsen (2000) nor the expression given earlier

by Larsen & Thorkildsen (1998) are exact (analytical)

expressions for a perfect spherical crystal.

For �B > 50� and large �tin=� ratios, the results obtained with

B&C's analytical expression considerably exceed the exact

solution of the Hamilton±Darwin transfer equations obtained

for �B = 90� (curve 3). For �B > 60� these results even exceed

curve 2, the absolute upper limit for the text=� ratio of a

spherical crystal [for �B > 65�, B&C's expression (37) becomes

complex]. For �B < 20�, on the other hand, the dashed curves

fall below curve 4, the exact result obtained for �B = 0�. The

deviations between the curves 3 and 4 and the dashed curves

are most probably caused by the approximations used for the

derivation of B&C's expressions (17), (36) and (37). Similar

deviations are observed for the yp values of Al Haddad &

Becker (1990) and Chukhovskii et al. (1998), which are based

on the more modern dynamical Takagi±Taupin equations (see

Fig. 2 of Ro00b). Obviously, the deviations are not inherent in

the kinematical or dynamical approach. They seem to be

caused by the procedure to build up the approximate solution

of the transfer equations for intermediate Bragg angles for the

boundary conditions of a sphere.

Nevertheless, it is obvious from Fig. 9 that in the case of a

moderate Bragg-angle range and small perfect crystallites, i.e.

for the restrictions of Table 1 of B&C, � < 64� and �tin=� � 4.2,

the B&C analytical expression for the primary-extinction

factor is a valuable tool in routine structure analysis. On the

other hand, for large perfect crystal spheres and large Bragg

angles, only a poor approximation will be obtained with B&C

as well as with the Al Haddad & Becker (1990) and

Chukhovskii et al. (1998) formalism.

5. Discussion

In the notation de®ned in the previous sections, the kinema-

tical intensity, Ih, given by A&M for the plane parallel plate

in re¯ection geometry, can be expressed as [A&M's �� and

2kt cos � = �2 sin � cos �=���t=sin �� are equivalent to ! = ��L

and �t1B =�L, respectively]

Ih �
1

sin2 �B

1

�2

sin� �t1B �
� �t1B �

� �2

; �22�

an expression similar to (15), the `kinematical approximation'

obtained in the framework of the dynamical theory. Ih has

dimensions of cmÿ2, although the term V 2 in the A&M

formula has been replaced in (22) by 1=V 2, where V is the

volume of the unit cell (without this correction the dimensions

of the `kinematical intensity' would be cm4). The integrated

intensity, Z1
ÿ1

Ih d� � 1

sin2 �B

1

�2

1

t1B

differs appreciably from the crystal-shape-independent

expression (4). Furthermore, the FWHM of the kinematical

intensity pro®le given by A&M,

�!FWHM �
0:44295�

t0 cos �B

; �23�

suggests the proportionality of the FWHM to the reciprocal of

the cosine of the Bragg angle and to the thickness of the

crystal plate normal to the surface, t0, in apparent disagree-

ment with the shape-independent generally valid expression

(7), �!integral = �L= �tdiffr, where L � 1= sin 2� and �tdiffr is the
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Figure 9
The extinction-corrected mean thickness, text = �tinyp, of the spherical
crystal versus the mean thickness of the crystal, �tin, for � = 1 (text, �tin, � in
the same arbitrary units). Curve 1: text = � tanh� �t1=��. Curve 2: result
corresponding to the R���upperlimit pro®les. Curve 3: result corresponding
to B&C's `Bragg case' pro®les. Curve 4: result corresponding to B&C's
`Laue case' pro®les. Dashed-dotted curves: obtained with B&C's
analytical expression for yp, calculated for the Bragg angles � = 0, 10,
20, 30, 40, 50, 60, 64, 65�.
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average thickness of the crystal in the direction of the

diffracted beam. Bearing in mind that in the symmetrical

Bragg case of the crystal plate with in®nite lateral extension

t0 = t1B sin �B and that for the pro®le (22) �!FWHM =

0:88589�!integral (this relation is obtained by means of Math-

ematica), it can easily be veri®ed that (23) is a very special case

of (7), which is only valid for re¯ecting planes parallel to the

in®nite surface of a plane parallel crystal plate.

The statement concerning the validity of the Scherrer

equation for the crystallite size effect in the case of `rocking

curves' haunts through the literature [see, for example, Sabine

(1988; x4); Mathieson (1994; footnote on page 125)]. As

emphasized by Rossmanith (1994), however, the Scherrer

equation is valid only for the experimental conditions of a

powder 2� scan, which differs essentially from the experi-

mental conditions of a single-crystal ! scan. The factor

0.44295, which is only about half of the Scherrer constant,

K ' 1, is an indication that (23) is not the Scherrer equation.

6. Conclusions

It was shown that the maximum as well as the shapes of the

kinematical Bragg intensity pro®les depend on a variety of

factors: the shape of the crystal, the crystal system and

magnitudes of the lattice parameters, the angles between the

crystal edges and the unit-cell axes, the angles between the

direction of the diffracted beam and the cell axes. Further-

more, it was shown that the widths of the pro®les are deter-

mined by the Lorentz factor and the mean thickness of the

crystal in the direction of the diffracted beam, for all crystal

shapes. It was shown that the kinematical re¯ectivity distri-

bution of a very thin ®nite plane parallel plate is almost

identical to the dynamical pro®le of a thin plane parallel plate

with in®nite lateral extension. Considering the extinction-

corrected intensity pro®les given by B&C for the two special

cases (2� = 0 and 180�), it was concluded that B&C's analytical

expression for the primary-extinction correction may be

overestimated for large Bragg angles and large perfect crys-

tals.

Note added in proof: Professor A. Authier has pointerd

out a copying error in the expression for Ih in Authier &

Malgrange (1998), x2.1(iv): V2 should be replaced by t2=V2. An

erratum has been published [Authier & Malgrange (2002).

Acta Cryst. A58, 79].
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